Особенности защиты беспроводных и проводных сетей. часть 2

Что такое Fast Ethernet?

Fast Ethernet (FE) — это термин Ethernet в вычислительных сетях, который означает передачу трафика со скоростью 100 Мбит/с. Он появился на рынке в 1995 году со стандартом IEEE 802.3u, а оригинальная версия работала со скоростью 10 Мбит/с. Fast Ethernet включает 100BASE-FX, 100BASE-TX, 100Base-T4 и так далее. «100» относится к скорости передачи 100 Мбит/с, в то время как «BASE» относится к сигнализации основной полосы частот. Буква, следующая за тире («T» or «F»), относится к физической среде (витая пара или оптоволокно, соответственно), которая несет сигнал, в то время как последний символ («X», «4» и т. Д.) Относится к используемый метод линейного кода. В таблице ниже приведены распространенные типы Fast Ethernet.

Название Кабель Макс.сегмент Преимущества
100Base-T4 Витая пара 100m Используйте Cat3 UTP
100Base-Tx Витая пара 100m Полный дуплекс на скорости 100 Мбит/с
100Base-FX Оптические кабели 2000m Полный дуплекс на скорости 100 Мбит/с; длинные работы

Из физических уровней Fast Ethernet, 100BASE-TX является наиболее распространенным на каждом сегменте сети с максимальным расстоянием кабельной системы 100 м.

Преимущество беспроводных технологий

Основным преимуществом беспроводных систем является то, что они могут быть установлены эффективно, оперативно и без значительных затрат практически в любом месте. Измерительные преобразователи с автономным питанием не требуют проводной инфраструктуры или локальных ИП, поэтому могут находиться на удалении от проводной промышленной шины и сети питания, обслуживающей рассматриваемую технологическую единицу. Они также могут быть установлены в таких местах, где организация питания или прокладка кабеля будут слишком затратными или опасными. Такая универсальность применения означает, что преимущества от беспроводных решений можно получить как на проектах нового капитального строительства, так и при модернизации существующих производственных мощностей.

На проектах нового капитального строительства обычно от 10 до 20% традиционных проводных сигнальных каналов заменяются на беспроводные. Подрядчики и владельцы предприятий считают грамотно организованную беспроводную сеть преимуществом с точки зрения сокращения объемов аппаратной инфраструктуры. Они также используют беспроводную технологию для управления рисками сбоя графика ввода в эксплуатацию объекта и управления затратами.

Беспроводные решения уменьшают негативные последствия нарушения графика или роста затрат, поскольку всегда имеется возможность расширения границ проекта и установки дополнительных устройств ввода/вывода по мере строительства. Чем позднее в проект вносятся изменения, тем больше риск срыва графика проекта и выхода за рамки бюджета. Беспроводные решения обычно легче адаптировать к таким изменениям, чем промышленные шины.

Довольно часто из конструкции строящегося нового и модернизируемого старого проекта убирают дополнительные измерения, поскольку это значительно скажется на капитальных затратах. Если в таких измерениях возникает потребность позже, установка проводных КИП может быть гораздо дороже беспроводных решений. На таких проектах по модернизации существующих производств беспроводные технологии являются отличным способом поддержания программы совершенствования операционной деятельности с целью повышения производительности объекта и безопасности, а также обеспечения соответствия принимаемому законодательству в области безопасности и защиты окружающей среды.

Беспроводная сеть предприятия может быть развернута с минимальным вмешательством в основную инфраструктуру (проводка, кабельные каналы, лотки и т. п.). Прокладка дополнительной проводки к существующим объектам может быть затратной, а вмешательство в работу давно используемых систем может привести к непредвиденным последствиям, таким как нарушение передачи сигнала.

Благодаря низкому энергопотреблению устройств WirelessHART они могут работать несколько лет без замены элемента питания. Регулируемое время обновления данных экономит заряд элемента питания путем выбора наиболее подходящего для конкретного процесса времени опроса, которое составляет, как правило, от одной секунды до одного часа. Большинство решений в настоящее время выполняют задачи по мониторингу и таким образом не требуют частых обновлений. Измерительные преобразователи WirelessHART могут при определенных обстоятельствах использоваться для управления в режиме реального времени, но при этом требуется высокая частота обновления, что в некоторых случаях делает необходимым подвод сетевого питания.

Беспроводные средства измерений, работающие при температурах от –55 °С, позволяют автоматизировать труднодоступные объекты, расположенные в жестких погодных условиях субарктического климатического пояса. Теперь для получения достоверной информации о состоянии объектов и оборудования не нужно устанавливать дорогостоящие обогреваемые шкафы. Это позволяет сократить затраты на автоматизацию технологических процессов в суровых условиях более чем на 20%. Низкотемпературные беспроводные решения решают задачи по обеспечению безопасности персонала, исключая выход специалистов в мороз на участок повышенной опасности. Эти задачи наиболее актуальны для удаленных и высотных объектов.

Многие проекты становятся привлекательными в плане показателей ROI при использовании беспроводных технологий, поскольку не требуют прокладки проводных промышленных шин и связанных с этим дополнительных затрат на установку и обслуживание. В таких ситуациях беспроводные решения могут быстро обеспечить возврат инвестиций и ускорить получение прибыли.

Где начало всех проблем?

На момент зарождения офисных и прочих WiFi сетей чаще всего поступали по нехитрому алгоритму: ставили одну-единственную точку доступа в центре периметра с целью максимального покрытия. Если для удаленных участков мощности сигнала не хватало, к точке доступа добавлялась усиливающая антенна. Очень редко добавлялась вторая точка доступа, например, для удаленного директорского кабинета. Вот, пожалуй, и все усовершенствования.

Такой подход имел свои основания. Во-первых, на заре становления беспроводных сетей оборудование для них стоило дорого. Во-вторых, установить больше точек доступа означало столкнуться с вопросами, на которые тогда не было ответов. Например, как организовать бесшовное переключение клиента между точками? Как бороться с взаимной интерференцией? Как упростить и упорядочить управление точками, например, одновременное применение запретов/разрешений, мониторинг и так далее. Поэтому гораздо проще было поступить по принципу: чем меньше устройств, тем лучше.

В то же время точка доступа, размещенная под потолком, вещала по круговой (точнее сказать, округлой) диаграмме.

Однако формы архитектурных строений не очень хорошо вписываются в округлые диаграммы распространения сигнала. Поэтому куда-то сигнал почти не доходит, и его нужно усиливать, а где-то вещание выходит за рамки периметра и становится доступным для посторонних.

Рисунок 1. Пример покрытия при использование единственной точки в офисе.

Примечание. Речь идет о грубом приближении, в котором не учитываются препятствия для распространения, а также направленность сигнала. На практике формы диаграмм для разных моделей точек могут отличаться.

Ситуацию можно улучшить, если использовать больше точек доступа.

Во-первых, это позволит более эффективно распределить передающие устройства по площади помещения.

Во-вторых, появляется возможность снизить уровень сигнала, не позволяя ему выходить за периметр офиса или другого объекта. В этом случае, чтобы считать трафик беспроводной сети, нужно почти вплотную приблизиться к периметру или даже войти в его пределы. Примерно так же действует злоумышленник, чтобы вклиниться во внутреннюю проводную сеть.

Рисунок 2. Увеличение числа точек доступа позволяет лучше распределить покрытие.

Давайте ещё раз рассмотрим оба рисунка. На первом четко прослеживается одна из главных уязвимостей беспроводной сети — сигнал можно ловить на приличном расстоянии.

На втором рисунке ситуация не так запущена. Чем больше точек доступа, тем эффективнее зона покрытия и при этом мощность сигнала уже почти не выходит за пределы периметра, грубо говоря, за пределы кабинета, офиса, здания и других возможных объектов.

Злоумышленнику придется как-то незаметно подкрадываться поближе, чтобы перехватить относительно слабый сигнал «с улицы» или «с коридора» и так далее. Для этого надо вплотную приблизиться к офисному зданию, чтобы, например, встать под окнами. Либо пытаться проникнуть в само офисное здание. В любом случае это повышает риск «засветиться» на видеонаблюдении, попасть на глаза охране. При этом значительно сокращается временной интервал для атаки. Это уже трудно назвать «идеальными условиями для взлома».

Разумеется, остается ещё один «первородный грех»: беспроводные сети вещают в доступном диапазоне, который могут перехватить все клиенты. Действительно, сеть WiFi можно сравнить с Ethernet-HUB, где сигнал передается сразу на все порты. Чтобы этого избежать, в идеале каждая пара устройств должна общаться на своем частотном канале, в который не должен встревать никто другой.

Вот вкратце основные проблемы. Рассмотрим пути их решения.

Технология

Стандарт первых версий (Ethernet v1.0 и Ethernet v2.0) говорит о том, что в качестве передающей среды в нем используется коаксиальный кабель. Впоследствии стали использовать витую пару и оптический кабель.

Каковы преимущества использования витой пары перед использованием коаксиального кабеля?

  • возможность работы в дуплексном режиме;
  • низкая стоимость кабеля;
  • высокая надежность сети в случае неисправности кабеля (при соединении типа «точка-точка» в случае обрыва кабеля связи лишаются два узла). В коаксиальном соединении используется топология «шина», поэтому в случае обрыва кабеля связи лишится сразу весь сегмент;
  • В витой паре минимально допустимый радиус изгиба меньше, чем в коаксиале;
  • В витой паре большая помехозащищенность, ввиду использования дифференциального сигнала;
  • Имеется возможность питания по кабелю маломощных узлов, к примеру, IP-телефонов (стандарт POE);
  • Гальваническая развязка трансформаторного типа. Используя коаксиальный кабель в российских условиях, где обычно отсутствует заземление компьютеров, эксплуатация часто сопровождается пробоями сетевых карт, а иногда даже и полным сгоранием системного блока.

В качестве веской причины перехода на оптический кабель стала необходимость в увеличении длины сегмента без повторителей. Управление доступом в случае с сетью на коаксиальном кабеле представляет собой множественный доступ с обнаружением коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection), скорость передачи данных достигает 10 Мбит/с, размер пакета от 72 до 1526 байт.

Полудуплексный режим работы (узел не может передавать и принимать информацию одновременно) сопряжен с ограничением по количеству узлов в одном сегменте сети. Оно ограничено предельным значением (1024 рабочих станции). На физическом уровне можно устанавливать более жесткие ограничения, к примеру, к сегменту тонкого коаксиала можно подключить не более 30 рабочих станций, а к сегменту толстого коаксиала — не более 100. Впрочем, сеть, которая построена на одном разделяемом сегменте, становится неэффективной задолго до достижения предельного значения количества узлов. Это происходит из-за полудуплексного режима работы.

В 1995 году был принят стандарт IEEE 802.3u Fast Ethernet, его скорость составляла 100 Мбит/с, появилась возможность работы в режиме полный дуплекс.

В 1997 году был принят стандарт IEEE 802.3z Gigabit Ethernet, его скорость составляла 1000 Мбит/с, передача осуществлялась по оптическому волокну. А через два года после его выхода, передача осуществлялась уже посредством витой пары — инженеры доработали стандарт.

Семь элементов кадра Ethernet

  1. Первый элемент, состоящий из 7 байт, называется «преамбула» (preamble) и используется для синхронизации процесса связи между двумя узлами сети, то есть между отправителем и получателем. Для выполнения этой задачи, с одной стороны, используются адаптеры для получателя, а с другой – генераторы для отправителя: эти два компонента, по сути, синхронизируют часы передающего и принимающего узлов.
  2. Вторым элементом является SFD (Start Frame Delimiter) размером в 1 байт, который используется для определения границы преамбулы и начала пакета данных.
  3. Третий и четвертый элемент кадра Ethernet, каждый длиной 6 байтов, соответствует MAC-адресам получателя и отправителя, они представляют собой физические идентификационные адреса, однозначно присовенные производителем каждой сетевой карты и, следовательно, однозначно связанные с каждым узлом локальной сети.
  4. Ethertype, размером 2 байта, указывает тип протокола, используемого для связи. В зависимости от случая, может быть использован, IPv4 или IPv6, PPPoE и ARP.
  5. Payload или «поле данных» – от 46 до 1500 байт – содержит реальную информацию в сообщении.
  6. Чтобы закрыть кадр используется FCS (Frame Check Sequence) из 4 байт, содержащих управляющее значение типа CRC (Cyclic Redundancy Check) и позволяющих обнаруживать ошибки в процессе обмена данными.

Советы по использованию Ethernet кабеля

Мы подготовили несколько советов и заметок об использовании Ethernet кабелей по всему дому:

  • Не разматывайте сетевой кабель;
  • Не зажимайте кабель в дверях;
  • Не сгибайте кабель под прямым углом; закругляйте его по углам.

Ethernet кабель Cat 6 немного прочнее, чем другие, потому он имеет пластиковый сердечник, который вмещает витые пары проводов. Но вы все равно не должны злоупотреблять прочностью кабеля. Чем больше вы будете сжимать кабель, тем больше будут сдвигаться провода внутри, и тем ниже будет скорость передачи данных.

Используя несколько простых советов, вы можете сделать свою домашнюю сеть максимально быстрой. 1 Гбит/с интернет-соединение не проблема, конечно, если ваш интернет-провайдер предлагает такой быстрый широкополосный доступ.

Категории кабеля витая пара (скорость передачи данных).

В основу определения категории витой пары положен максимально пропускаемый частотный диапазон. Это обусловлено количеством витков на одну единицу длины кабеля. То бишь, чем выше категория, тем больше пропускаемый частотный диапазон в следствии увеличения витков каждой витой пары. Категории витой пары описывается в международных и отечественных стандартах.

Категории (сокращенно CAT) витой пары определяют расчетную скорость передачи данных. Кроме этого кабель LAN еще разделяют на классы и при построении структурированной кабельной системы их тоже учитывают. Следует помнить, что витая пара более высокого класса поддерживает технические возможности низшего класса. А вот витая пара по классу ниже не поддерживает технические приложения высшего класса. Чем выше класс тем лучше передаточные характеристики и выше предельная частота работы кабельной линии.

  • CAT1 (частотная полоса — 0,1 МГц). Имеет одну пару и используется для передачи голоса и цифровых данных при участии модема. Это стандартный телефонный кабель, который в свое время использовался в «скрученном» виде в США, а в России применяется и сейчас без скруток. Не подходит для современных систем и имеет большое влияние помех.
  • CAT2 (частотная полоса — 1 МГц). Имеет две пары проводников и уже изжил себя. Иногда применяется при построении телефонных сетей. Ранее встречался в сетях Arcnet и Token Ring. Обладает скоростью передачи данных до 4 Мбит/с. Не годится для построения современных сетей.
  • CAT3 (частотная полоса — 16 МГц. Класс «С»). Встречается 2-х парный и 4-х парный тип витой пары. Применяется не только для создания телефонных, но и локальных сетей на базе 10BASE-T. Поддерживает скорость передачи данных от 10 до 100 Мбит/с по технологии 100BASE-T4 протяженностью не более 100 метров. В отличии от CAT1 и CAT2 поддерживает стандарт IEEE 802.3.
  • CAT4 (частотная полоса — 20 МГц). В свое время этот 4-х парный кабель использовался в технологии 10BASE-T и 100BASE-T4. Возможна скорость передачи данных до 16 Мбит/с. В наши дни не используется.
  • CAT5 (частотная полоса — 100 МГц. Класс «D»). Кабель применялся для создания телефонных линий и построения локальных сетей 100BASE-TX, а также в Ethernet (LAN). Поддерживает скорость передачи данных до 100 Мбит/с.
  • CAT5e (частотная полоса 125 МГц). Это усовершенствованная витая пара пятой категории. При использовании 2-х пар поддерживает скорость передачи данных до 100 Мбит/с и до 1000 Мбит/с в 4-х парном кабеле. Как правило, используется 4-х парный кабель для построения локальной компьютерной сети. Это самый распространенный тип витой пары.
  • CAT6 (частотная полоса 250 МГц. Класс «E»). Это распространенный тип кабеля, который применяется в сетях Fast Ethernet и Gigabit Ethernet. В структуре кабеля четыре пары проводников. Поддерживает высокую скорость передачи данных до 10 Гбит/с протяженностью не более 55 метров.
  • CAT6a (частотная полоса 500 МГц. Класс «EA»). Структура кабеля состоит из четырех пар проводников. Он используется в сетях Gigabit Ethernet и поддерживает скорость до 10 Гбит/с на расстоянии до 100 метров.
  • CAT7 (частотная полоса 600 — 700 МГц. Класс «F»). Поддерживает скорость передачи данных до 10 Гбит/с. Структура кабеля имеет общий внешний экран и фольгированную защиту каждой пары. По типу относиться к S/FTP (ScreenedFullyShieldedTwistedPair).
  • CAT7a (частотная полоса 1000 -1200 МГц. Класс «FA»). Скорость витой пары доходит до 40 Гбит/с на расстоянии до 50 метров и до 100 Гбит/с протяженностью до 15 метров.

На просторах интернет мне попалось хорошее видео по теме, предлагаю вам его посмотреть.

Для того чтобы сетевой кабель служил долго следует соблюдать правила монтажа. Например, при прокладке нужно следить за целостностью кабеля по всей его длине и не допускать растяжений и изгибов потому, что это может нарушить структуру экрана, что приведет к низкой устойчивости кабеля к электромагнитным помехам. Дренажный провод кабеля должен быть соединен с экраном разъема.

Кроме этого при монтаже нельзя допускать изгибов более восьми внешних диаметров кабеля. Слишком сильный изгиб может повредить фольгированный экран, что заметно ухудшит свойства кабеля и снизит скорость связи внутри сети. Пока!

Teltonika

Федор Никулин – региональный директор по продажам.

Федор сделал обзор линейки оборудования Teltonika и показал бизнес-решения, на которые они рассчитаны. На российский рынок предлагаются, в первую очередь, трекеры и маршрутизаторы, работающие по каналам GSM/LTE и позволяющие держать связь с мобильными объектами, при необходимости раздавая WiFi-трафик. Оборудование ставится главным образом на транспортные средства: грузовые и легковые автомобили, тракторы, сельхозтехнику, карьерные самосвалы, корабли, катеры и любую другую мобильную технику. Также есть стационарные решения, предназначенные для сбора и передачи по радиоканалам информации от всевозможных датчиков – терминалов, банкоматов, электросчетчиков и широкого перечня аппаратуры.

Компания на рынке уже более 20 лет и, как отметил Фёдор, динамично развивается, планируется введение новых фабрик, мощностью в сотни тысяч единиц оборудования в месяц. В следующем году прогноз продаж – 10 миллионов устройств в год. Офисы, исследовательские центры и склады компании Teltonika расположены не только в Литве, где находится штаб-квартира, но и по всему миру. Фёдор Никулин отметил, что кастомизация – сильная сторона компании, а брендирование продукции с логотипом заказчика возможно уже при партии от 500 штук и более. Из новинок были анонсированы компактные LTE-роутеры серии RUT X и RUT XR, которые выйдут в 2019 году.

Характеристики витой пары

Провод витая пара делят на несколько разновидностей — внутренние и внешние. Если модель изготовлена для размещения внутри дома, то дополнительная защита к ней не требуется.

Внешние типы (для улицы) проводов оснащают специальными экранами для дополнительной защиты. Это оболочка, которая предохраняет от механических повреждений, а также проникновения влаги и пыли внутрь. Также могут быть провода с огнеупорной оболочкой, предназначенные для размещения в объектах, которые могут воспламениться.

Монтаж витой пары дома

Защищённые кабели могут спокойно работать в жару, снегопад и ливень, то есть в любых погодных условиях. Дополнительно к внешнему кабелю можно прицепить специальный шнур, который защищает от сильных порывов ветра (используется, если кабель находится на весу, на столбе). Это подвесные модели проводов, которые не крепят к стенам.

Помимо вышеуказанных свойств, у витой пары имеются и дополнительные характеристики, о которых желательно узнать подробнее перед покупкой и монтажом.

Число пар в витой паре

Эта характеристика показывает количество пар, которая применяется в одном изделии. Уже было сказано выше, что можно найти провода с двумя или четырьмя парами. Чем больше их количество, тем больше степень связи между проводниками в связке. Это означает, что электропомехи влияют на оба провода, что позволяет уменьшить помехи от различных источников и сохранить одинаковый уровень передачи данных.

Число жил

Существует несколько видов проводов, которые различаются по количеству жил в витой паре:

  • Вариант № 1 — одножильный. Представляет из себя провод, сечение которого создаётся благодаря только одному проводнику.
  • Вариант № 2. Если провод многожильный, то он имеет несколько сечений, которые переплетаются между собой.

Толщина кабеля

Диаметр рассматриваемого кабеля в сборе составляет от 5,2 до 6 мм. Внутренние проводники, скрытые под защитной оболочкой, имеют толщину примерно в 0,6 мм.

Толщина изоляционного слоя составляет 0,2 мм. Оболочка четырепарных кабелей составляет примерно 0,9 мм.

Материал для проводников

Какие жилы используются в витой паре для интернета — важный вопрос, влияющий на свойства провода. Для изготовления проводников обычно используют медь в чистом виде. Однако в последнее время начинают проводить исследования для удешевления конструкции гибких жил. Одним из очевидных решений в данном направлении является замена конкретного используемого материала на комбинацию различных видов.

Медный провод

К примеру, некоторые производители выпускают кабели с проводником из алюминия, который намного дешевле и легче меди, но имеет хорошую электропроводимость. Однако, несмотря на вышеописанное преимущество, у этого материала имеются и недостатки:

  • механическая прочность при изгибе значительно меньше, чем в имеющемся варианте — кабель просто переломится, если его часто гнуть, а потому такой вариант подойдет только в том случае, если его надежно зафиксировать и не трогать;
  • сложность в изготовлении проводов;
  • провод может подвергнуться образованию коррозии, если использовать его в некоторых агрессивных средах.

Чтобы решить эти проблемы, к примеру, французская компания «Филатекс» изготавливает кабели из легированного алюминия, куда добавляют части других сплавов для улучшения защитных и механических свойств.

Материал для оболочки

Материал оболочки представляет собой особо прочный пластик, а также дополнительную оплётку из меди. Для изготовления оболочки часто используют полиэтилен, который может защитить провод от прямых попаданий солнечного света. Если на кабеле имеются дополнительные слои защиты, то на упаковке будет написано об этом. Недостаток полиэтилена — он очень хорошо горит. Используется в температурных зонах от -60 и до +80 °С.

Существует и другой тип оболочки — из хлорированного полиэтилена. Этот материал не подвержен воспламенению, а также имеет стойкость к химическому воздействию. Можно использовать в зонах температурного режима от -35 и до +90 °С.

Существуют и другие материалы для оболочки (различные компаунды), но их использование небезопасно, поскольку вступают в реакцию с разными веществами и могут быть ядовитыми.

Традиционный материал для оболочки — ПВХ. Его можно использовать в температурном режиме от -20 и до +60 °С.

Кабели отличаются и по форме оболочки — в зависимости от того места, где нужно проложить его. Например, для обычного использования применяют круглую форму, но для установки под ковровым покрытием или стойкой телевизора, можно найти кабель, имеющий плоскую форму (для удобства).

Серый вариант — для дома

Как правило, этих сведений достаточно, чтобы понять, какой кабель для интернета выбрать в квартиру.

Gigabit Ethernet

Спецификация
физичсекой среды
(1000Base-SX, 1000Base-LX).

1000BASE-T, IEEE 802.3ab — Стандарт Ethernet 1 Гбит/с. Используется витая пара категории 5e или
категории 6. В передаче данных участвуют все 4 пары. Скорость передачи данных —
250 Мбит/с по одной паре.

1000BASE-TX, — Стандарт Ethernet 1 Гбит/с, использующий только витую пару категории
6. Практически не используется.

1000Base-X — общий термин для обозначения технологии
Гигабит Ethernet, использующей в качестве среды
передачи данных оптоволоконный кабель, включает в себя 1000BASE-SX, 1000BASE-LX
и 1000BASE-CX.

1000BASE-SX, IEEE 802.3z — 1 Гбит/с Ethernet технология, использует многомодовое
волокно дальность прохождения сигнала без повторителя до 550 метров.

1000BASE-LX, IEEE 802.3z — 1 Гбит/с Ethernet технология, использует многомодовое

волокно дальность прохождения сигнала без повторителя до 550 метров. Оптимизирована для дальних расстояний, при использовании одномодового волокна (до 10 километров).

1000BASE-CX — Технология Гигабит Ethernet

для коротких расстояний (до 25
метров), используется специальный медный кабель
(Экранированная витая пара (STP)) с волновым сопротивлением 150 Ом. Заменён стандартом 1000BASE-T, и сейчас не используется.

1000BASE-LH (Long Haul) — 1 Гбит/с Ethernet

технология, использует одномодовый оптический кабель,
дальность прохождения сигнала без повторителя до 100 километров.

Проблемы
технологии
Gigabit Ethernet.

Обеспечение приемлемого диаметра сети для работы на разделяемой
среде
. В связи с ограничениями, накладываемыми методом CSMA/CD на длину
кабеля, версия Gigabit Ethernet

для разделяемой среды допускала бы длину сегмента всего в 25 метров. Необходимо
было решить эту проблему.

Достижение битовой скорости 1000Мбит/с
на оптическом кабеле
. Технология Fibre Channel, физический уровень которой был взят за основу для
оптоволоконной версии Gigabit Ethernet,
обеспечивает скорость передачи данных всего 800Мбит/с.

Использование в качестве кабеля витой пары.

Для решения этих задач пришлось внести изменения
не только в физический уровень, но и в уровень МАС. Для расширения максимального диаметра сети Gigabit Ethernet в полудуплексном
режиме до 200 м
разработчики технологии предприняли достаточно естественные меры, основывающиеся
на известном соотношения времени передачи кадра минимальной длины и временем
двойного оборота.

Минимальный размер кадра был увеличен (без учета преамбулы) с 64 до 512 байт
или до 4096 bt. Соответственно, время двойного
оборота теперь также можно было увеличить до 4095 bt,
что делает допустимым диаметр сети около 200 м при использовании одного повторителя. При двойной задержке сигнала в 10 bt/m оптоволоконные кабели длиной 100 м вносят вклад во время
двойного оборота по 1000 bt, и если повторитель и сетевые
адаптеры будут вносить такие же задержки, как в технологии Fast

Ethernet (данные для которых приводились в предыдущем
разделе), то задержка повторителя в 1000 bt и пары
сетевых адаптеров в 1000 bt дадут в сумме
время двойного оборота 4000 bt, что удовлетворяет
условию распознавания коллизий. Для увеличения длины кадра до требуемой в новой
технологии величины сетевой адаптер должен дополнить поле данных до длины 448 байт так называемый расширением (extention),
представляющим собой поле, заполненное запрещенными символами кода 8В/10В,
которые невозможно принять за коды данных.

Для сокращения накладных расходов при использовании слишком длинных кадров для
передачи коротких квитанций разработчики стандарта разрешили конечным узлам
передавать несколько кадров подряд, без передачи среды другим станциям. Такой
режим получил название Burst Mode
— монопольный пакетный режим. Станция может передать подряд несколько кадров с
общей длиной не более 65 536 бит или 8192 байт. Если станции нужно передать
несколько небольших кадров, то она может не дополнять их до размера в 512 байт,
а передавать подряд до исчерпания предела в 8192 байт (в этот предел входят все
байты кадра, в том числе преамбула, заголовок, данные и контрольная сумма).
Предел 8192 байт называется BurstLength. Если станция
начала передавать кадр и предел BurstLength
был достигнут в середине кадра, то кадр разрешается передать до конца.
Увеличение «совмещенного» кадра до 8192 байт несколько задерживает
доступ к разделяемой среде других станций, но при скорости 1000 Мбит/с эта задержка не столь существенна.

Cambium Networks

Сергей Голованов – региональный технический менеджер.

Сергей отметил, что компания относительно недавно начала развивать направление WiFi. Поэтому перед вендором стояла задача чем-то выделиться на рынке, где элементная база и технологии стандартизированы, а оборудование ряда производителей отличается разве что дизайном корпуса. Поэтому, взяв современные технологии, Cambium добавил к ним новое качество – бесплатный виртуальный контроллер, а также еще один плюс — нулевуюая стоимость лицензий. И в дополнение к этому основной пакет технической поддержки также бесплатен. Иначе говоря, покупая «железо» Cambium, заказчик покупает его навсегда с бесплатным базовым пакетом обслуживания – никаких дополнительных отчислений сверху на весь период работы.

Безусловно, WiFi не единственное направление компании. Производитель предлагает традиционные решения «точка-точка» и «точка-многоточка». Полный пакет своих решений производитель называет «Беспроводная фабрика». Из новинок были представлены точка доступа e700, оборудование широкополосного доступа ePMP 3000, PTP 550, обновленное облачное управление cnMaestro 2.0, а также новый «железный» контроллер c4000.

Предисловие ко второй части

В предыдущей статье «Особенности защиты беспроводных и проводных сетей. Часть 1 — Прямые меры защиты» шла речь о проблемах безопасности сети WiFi и прямых методах защиты от несанкционированного доступа. Были рассмотрены очевидные меры для предотвращения перехвата трафика: шифрование, скрытие сети и фильтрация по MAC, а также специальные методы, например, борьба с Rogue AP. Однако помимо прямых способов защиты существуют ещё и косвенные. Это технологии, которые не только помогают улучшить качество связи, но и дополнительно способствуют улучшению защиты.

Две главных особенности беспроводных сетей: удаленный бесконтактный доступ и радиоэфир как широковещательная среда передачи данных, где любой приемник сигнала может прослушивать эфир, а любой передатчик может забивать сеть бесполезными передачами и просто радиопомехами. Это, помимо всего прочего, не лучшим образом сказывается на общей безопасности беспроводной сети.

Одной безопасностью жив не будешь. Наде ещё как-то работать, то есть обмениваться данными. А с этой стороны к WiFi много других претензий:

  • пробелы в покрытии («белые пятна»);
  • влияние внешних источников и соседних точек доступа друг на друга.

Как следствие, из-за описанных выше проблем снижается качество сигнала, связь теряет устойчивость, падает скорость обмена данными.

Разумеется, поклонники проводных сетей с удовольствием отметят, что при использовании кабельных и, тем более, оптоволоконных соединений, таких проблем не наблюдается.

Возникает вопрос: а можно как-то решить эти вопросы, не прибегая к каким-либо кардинальным средствам вроде переподключения всех недовольных к проводной сети?

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Сети Сити
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: